Algebraic Multigrid Solvers for Complex-Valued Matrices
نویسندگان
چکیده
In the mathematical modeling of real-life applications, systems of equations with complex coefficients often arise. While many techniques of numerical linear algebra, e.g., Krylovsubspace methods, extend directly to the case of complex-valued matrices, some of the most effective preconditioning techniques and linear solvers are limited to the real-valued case. Here, we consider the extension of the popular algebraic multigrid method to such complex-valued systems. The choices for this generalization are motivated by classical multigrid considerations, evaluated with the tools of local Fourier analysis, and verified on a selection of problems related to real-life applications.
منابع مشابه
Performance of H-LU Preconditioning for Sparse Matrices
In this paper we review the technique of hierarchical matrices and put it into the context of black-box solvers for large linear systems. Numerical examples for several classes of problems from medium to large scale illustrate the applicability and efficiency of this technique. We compare the results with those of several direct solvers (which typically scale quadratically in the matrix size) a...
متن کاملA Monolithic Geometric Multigrid Solver for Fluid-Structure Interactions in ALE formulation
We present a monolithic geometric multigrid solver for fluid-structure interaction problems in Arbitrary Lagrangian Eulerian coordinates. The coupled dynamics of an incompressible fluid with nonlinear hyperelastic solids gives rise to very large and ill conditioned systems of algebraic equations. Direct solvers usually are out of question due to memory limitations, standard coupled iterative so...
متن کاملAlgebraic Multigrid
In computer simulation of particular systems (e.g. in physics, biology, economics), partial differential equations (PDE) are solved numerically, mainly by applying Finite Element (FE) or Finite Difference (FD) Analysis. This methods lead to algebraic systems of equations with large, sparse system matrices that have to be solved. Since direct solvers can not exploit the sparsity when the structu...
متن کاملAlgebraic Multigrid for Discrete Differential Forms
Discrete differential forms arise in scientific disciplines ranging from computational electromagnetics to computer graphics. Examples include stable dis-cretizations of the eddy-current problem, topological methods for sensor network coverage, visualization of complex flows, surface parameterization, and the design of vector fields on meshes. In this thesis we describe efficient and scalable n...
متن کاملSmoothed aggregation for Helmholtz problems
We outline a smoothed aggregation algebraic multigrid method for 1D and 2D scalar Helmholtz problems with exterior radiation boundary conditions. We consider standard 1D finite difference discretizations and 2D discontinuous Galerkin discretizations. The scalar Helmholtz problem is particularly difficult for algebraic multigrid solvers. Not only can the discrete operator be complex-valued, inde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 30 شماره
صفحات -
تاریخ انتشار 2008